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Our world contains complexity and order at many levels. From fundamental
particles, to atoms, to molecules, to systems of many particles, to biological life,
nature follows physical laws. At each level, new abstractions and theories are needed
to organize our understanding of nature [1]. The job of a physicist is to organize the
apparent complexity of the world, at any level, under the most basic mathematical
principles with the widest possible reach.

Much of the complexity we see in our everyday lives is the complexity of life.
We are surrounded by organisms with intricate structure, structure produced by
evolution over very long timescales. But there is another level of complexity to the
world above this – a universe of things produced not over evolutionary time, but
which are rather the result of what organisms learn during the course of their lives.
Indeed, most of the complexity we experience at human scales in our environment
is this sort of complexity – of ideas and artifacts which result from organisms like
ourselves learning, thinking, planning, and acting to shape our environment. It is
the complexity of intelligence.

How can we approach the problem of understanding this level of phenomena
in the world? Of course, a great deal of effort already been put into understand-
ing intelligent systems from neuroscientists, psychologists, computer scientists, and
indeed from physicists [2]. But the present moment is an extraordinary time for
studying learning and intelligence. Our moment is special because, with the success
of deep learning, we are just now beginning to replicate increasingly general forms
of intelligence artificially.

Observing this recent success, we are confronted with a couple of key facts:
The first is that while the capabilities of today’s best AI systems are still limited,
they demonstrate that at least some aspects of intelligence are not constrained to
biology and brains, but are rather substrate independent, a very general affordance
of matter. Brains are no longer the only systems to study, if one wants to study
general forms of intelligence. The second is that a new type of highly quantitative,
empirical science on intelligent systems is now possible which wasn’t before. With
artificial neural networks, one can perform arbitrary interventions, experiments, and
measurements, with access to the full internal state of the systems.

With this highly quantitative science now possible, physicists have flourished.
Indeed, it is astonishing how important physicists have been so far in developing
both theoretical and practical understanding of deep learning. To list some exam-
ples, there is the empirical work of Dario Amodei (PhD, Princeton, 2011), Jared
Kaplan (PhD, Harvard, 2009), Sam McCandlish (PhD, Stanford, 2017), and Tom
Henighan (PhD, Stanford, 2017) on neural scaling laws [3, 4], which inspired OpenAI
to scale up autoregressive generative models to GPT-3 and beyond. There is also
the theoretical work of Yasaman Bahri (PhD, UC Berkeley, 2017) [5], Dan Roberts
(PhD, MIT, 2016) [6], and Cengiz Pehlevan (PhD, Brown, 2011) [7] and others on
understanding these scaling laws theoretically. There is the work of Surya Ganguli
(PhD, UC Berkeley, 2004) [8, 9], Hidenori Tanaka (PhD, Harvard, 2018) [10, 11],
and many others on neural network loss landscapes and training dynamics. There
is also the recent work of Adam Jermyn (PhD (Astronomy) Cambridge, 2018) and
Adam Scherlis (Phd, Stanford, 2019) [12] on feature superposition in neural net-
works.
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It seems then that there is already a field, populated in no small part by physi-
cists, dedicated to understanding deep neural networks. Noticing this, it may make
sense to formally recognize and define the beginnings of a subfield of physics here,
dedicated to studying these systems, with the broader goal of understanding in-
telligence. It is worth responding immediately to some likely objections to this
idea:

Isn’t this just biophysics? While the study of intelligence and neural networks
has traditionally been encompassed by biophysics, the field of understanding deep
learning has some notable methodological differences from biophysics. Indeed, the
background knowledge – both methods and terminology – are quite distinct from
what biophysicists currently train in and typically encounter. To study AI systems,
one needs knowledge of machine learning and all of its associated terminology and
skills: knowledge of modern deep learning architectures and optimization meth-
ods and datasets and benchmarks – quite different from what is needed to study
biological organisms, e.g. C. elegans.

Isn’t this just computer science? Artificial intelligence has a long history within
computer science. However, the mindset and methods typical of computer science
are somewhat different from the mindset which has been most fruitful so far in
understanding deep learning. As a discipline, computer science emerged out of
mathematics [13], and is fairly attached to the methodology of mathematical proof.
However, mathematical proofs have their limits in the insights they can generate
about deep learning. Often, less formal (though still mathematical) models of phe-
nomena in deep learning provide more insight. However a more basic limitation of
mathematical formalism is that the properties of neural networks are often primar-
ily determined by the properties of the data they are trained on. Absent a good
theory of data then, there are limits to what one can derive from math alone.

It is worth spending slightly more time on this last point about data, since it
gets at a core reason why physicists should be excited about studying deep neural
networks, and more generally systems that learn. Consider what it means for a (ML)
system to learn in the first place. It means that its internal state and dynamics
in some way come to depend on facts about its (data) environment. In studying
systems that learn, we can therefore hope to learn something new about the world.
When we discover some order governing the properties of neural networks (e.g.
scaling laws), these can hint at some corresponding order to the world, and to new
physics waiting to be discovered about the organization of the world at a macro-
level.

We have focused so far on the “science of deep learning”, considered as a subfield
of physics, with the broader goal of better understanding learning and intelligence
and ultimately our world. However, there is another intersection between machine
learning and physics which is a natural ally to this program: the application of
machine learning as a tool directly for solving physics problems. In this case, the
relationship between what ML models learn and new physical insights is more direct.
The methods and terminology of each field are similar to each other, too. We might
hope then that both machine learning applied to physics, and the physics of learning,
could grow together, with more powerful models both directly and indirectly giving
us greater insight into the organization of matter and information in our universe.

Acknowledgements: Many thanks to Isaac Chuang for encouraging me to write
this and to William Brandon and Hidenori Tanaka for helpful discussions.

2



References

[1] Philip W Anderson. “More Is Different: Broken symmetry and the nature of
the hierarchical structure of science.” In: Science 177.4047 (1972), pp. 393–
396.

[2] Hermann von Helmholtz. Handbuch der physiologischen Optik. Vol. 3. Third
volume of a three-volume work. Leipzig: Leopold Voss, 1867.

[3] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, JeffreyWu, and Dario Amodei.
“Scaling laws for neural language models”. In: arXiv preprint arXiv:2001.08361
(2020).

[4] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Ja-
cob Jackson, Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel
M Ziegler, John Schulman, Dario Amodei, and SamMcCandlish. “Scaling laws
for autoregressive generative modeling”. In: arXiv preprint arXiv:2010.14701
(2020).

[5] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma.
“Explaining neural scaling laws”. In: arXiv preprint arXiv:2102.06701 (2021).

[6] Alexander Maloney, Daniel A Roberts, and James Sully. “A solvable model
of neural scaling laws”. In: arXiv preprint arXiv:2210.16859 (2022).

[7] Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. “Spectrum de-
pendent learning curves in kernel regression and wide neural networks”. In:
International Conference on Machine Learning. PMLR. 2020, pp. 1024–1034.

[8] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization”. In: Advances in neu-
ral information processing systems 27 (2014).

[9] Andrew M Saxe, James L McClelland, and Surya Ganguli. “Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks”. In:
arXiv preprint arXiv:1312.6120 (2013).

[10] Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and
Hidenori Tanaka. “Mechanistic mode connectivity”. In: International Confer-
ence on Machine Learning. PMLR. 2023, pp. 22965–23004.

[11] Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and
Hidenori Tanaka. “Neural mechanics: Symmetry and broken conservation laws
in deep learning dynamics”. In: arXiv preprint arXiv:2012.04728 (2020).

[12] Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, and Buck Shlegeris.
“Polysemanticity and capacity in neural networks”. In: arXiv preprint arXiv:2210.01892
(2022).

[13] Alan Mathison Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proceedings of the London Mathematical Society
58 (Nov. 1936), pp. 230–265. doi: 10.1112/plms/s2-42.1.230.

3

https://doi.org/10.1112/plms/s2-42.1.230

